Efficient and Stable Photocatalytic Systems for Reductive Dechlorination of p-Chlorobiphenyl by Sodium Borohydride Masashi ISHIKAWA[†] and Shunichi FUKUZUMI* Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 Acridine Derivatives (9,10-dihydro-10-methylacridine and acriflavine) act as efficient and stable photocatalysts for reductive dechlorination of p-chlorobiphenyl as well as dehalogention of bromochlorobenzenes with sodium borohydride in acetonitrile/ $\rm H_2O$ (9:1 v/v) at 298 K. In the case of acriflavine, the limiting quantum yield at irradiation wavelength λ = 350 nm has reached 0.63. Photochemical reductive dechlorination of chlorinated compounds has recently been studied extensively, in part due to their role as environmental pollutants. $^{1-7}$) Although several photocatalytic systems for reductive dechlorination have so far been reported, 3,4) it is desired to develop much more efficient and stable photocatalysts which have sufficient spectral overlap with the solar spectrum. This study reports efficient and stable photocatalytic systems for reductive dechlorination of p-chlorobiphenyl, which is known to be most difficult to be reduced among PCBs, 7) as well as dehalogenation of bromoclorobenzenes using sodium borohydride (NaBH₄) and acridine derivatives as a reductant and photocatalysts, respectively. No appreciable photoreduction of p-chlorobiphenyl (ClBP) by ${\rm NaBH_4}$ occurs in the absence of photocatalyst in a mixture of acetonitrile and ${\rm H_2O}$ (MeCN/H₂O, 9:1 v/v) under the irradiation of light from a Xenon lamp as shown in Fig. 1 (part a).⁸⁾ When 9,10-dihydro-10-methylacridine (AcrH₂) or acriflavine (AFH⁺) is added to this system at 298 K, each species acts as an efficient photocatalyst for reductive dechlorination of p-chlorobiphenyl with NaBH₄ to yield biphenyl as shown in Fig. 1 (part b or c), where the yield of biphenyl was determined by glc. No appreciable photo- [†]Present address: Laboratory of Organic Chemistry, Osaka Women's University, Sakai, Osaka 590. degradation of the catalysts was observed during the photocatalytic reaction, since the concentration of AcrH₂ remained unchanged. When AcrH₂ is replaced by the oxidized form, 10methylacridinium perchlorate $(AcrH^+ClO_{\Delta}^-)$, essentially the same result is obtained, since AcrH⁺ is immediately reduced by NaBH₄ to yield $AcrH_2$ selectively. 9) Thus, AcrH₂/AcrH⁺ redox pair acts as an efficient and stable photocatalyst for dechlorination of ClBP with NaBH4. Efficient dehalogenation of o-, m-, p-bromochlorobenzenes also occurs by using the present photocatalytic system. 10) Since the one-electron oxidation potential $({\rm E}_{ox}^0)$ of the singlet excited state Fig. 1. Photodechlorination of p-chlorobiphenyl (0.10 mol dm⁻³) with NaBH₄ (1.0 mol dm⁻³) in MeCN/H₂O (9:1 v/v) (a) in the absence of catalyst (Δ), (b) in the presence of AcrH₂ (2.0 x 10⁻² mol dm⁻³) (\bullet) and (c) AFH⁺ (2.0 x 10⁻² mol dm⁻³) (\bullet) under the irradiation of light from a Xenon lamp. Plots of yield of biphenyl vs. irradiation time. $^{1}\text{AcrH}_{2}^{*}$ is known to be largely negative (E $_{\text{OX}}^{0}$ = -3.1 V vs. SCE), 11) $^{1}\text{AcrH}_{2}^{*}$ may act as a very strong reductant. In fact, the fluorescence of $^{1}\text{AcrH}_{2}^{*}$ is readily quenched by C1BP. From the Stern-Volmer plot is obtained the Stern-Volmer constant (KsV) as 1.2 x 10 2 dm 3 mol $^{-1}$. The fluorescence lifetime (τ) of $^{1}\text{AcrH}_{2}^{*}$ in MeCN/H2O (9:1 v/v) was determined as 7.0 ns by using the single photon counting technique. Thus, the quenching rate constant (kq = KsV $^{\tau}$) is obtained as 1.7 x 10 10 dm 3 mol $^{-1}$ s $^{-1}$ which is close to the diffusion rate constant. 10) The KsV value for the fluorescence quenching of the reduced form of acriflavine ($^{1}\text{AFH}_{2}^{*}$) by C1BP is also obtained as 3.6 x 10 1 dm 3 mol $^{-1}$ which is smaller than the KsV value of $^{1}\text{AcrH}_{2}^{*}$ (1.2 x 10 2 dm 3 mol $^{-1}$). The quantum yields (Φ) of the photocatalytic dechlorination of ClBP were determined using a ferrioxalate actinometer. The Φ values in the presence of AcrH $_2$ under irradiation of light (λ = 320 nm) were constant with the change of both AcrH $_2$ and NaBH $_4$ concentrations. On the other hand, the quantum yield increased with an increase in the concentration of ClBP to approach a limiting value (Φ_{∞}) in the high concentrations in accordance with Eq. 1. Then, from the linear plot between Φ^{-1} and [ClBP]⁻¹ the $$\Phi^{-1} = \Phi_{\infty}^{-1} [1 + (K_{obs}[C1BP])^{-1}]$$ (1) Φ_{∞} and K_{obs} values are obtained as 0.42 and 1.6 x 10² dm³ mol⁻¹, respectively. In the absence of NaBH₄ as well, p-chlorobiphenyl was reduced by AcrH₂ in MeCN/H₂O (9:1 v/v) under irradiation of light (λ = 320 nm) to yield AcrH⁺ and biphenyl, Eq. 2. The Φ values in the absence of NaBH₄ showed the same dependence on the concentration of ClBP as Eq. 1, and the Φ_{∞} and K_{obs} values were determined as 0.61 and 1.2 x 10^2 dm³ mol⁻¹, respectively, which agree reasonably well as those obtained in the presence of NaBH₄ (0.42 and 1.6 x 10^2 dm³ mol⁻¹, respectively).¹¹⁾ When AcrH₂ is replaced by AFH⁺ in the photocatalytic reductive dechlorination of ClBP with NaBH₄, the limiting quantum yield (Φ_{∞} = 0.63) becomes larger than the case of $AcrH_2$ (Φ_{∞} = 0.42) under irradiation of light of longer wavelength (λ = 350 nm), which has the sufficient overlap with the solar spectrum for the practical use. The K_{obs} values obtained from the Φ dependence on the concentration of ClBP (Eq. 1) in the AcrH₂/AcrH⁺- and AFH₂/AFH⁺-catalyzed photo-dechlorination with NaBH₄ ($K_{obs} = 1.6 \times 10^2$ and 3.3×10^1 dm³ mol⁻¹, respectively) agree well with the K_{SV} values of ${}^{1}AcrH_{2}^{*}$ and ${}^{1}AFH_{2}^{*}$ (K_{SV} = 1.2×10^2 and 3.6×10 dm³ mol⁻¹, respectively). Thus, the photocatalytic dechlorination of p-chlorobiphenyl by NaBH₄ may proceed <u>via</u> the reductive dechlorination of C1BP by the singlet excited states 1 AcrH $_2$ * (or 1 AFH $_2$ *), followed by the thermal reduction of AcrH+ (or AFH+) by NaBH4 to regenerate $AcrH_2$ (or AFH_2) as shown below. ## References - 1) "PCB Poisoning and Pollution," ed by K. Higuchi, Academic Press, Tokyo (1976); D. G. Ackerman, L. L. Scinto, P. S. Bakshi, R. G. Delumyea, R. J. Johnson, G. Richard, A. M. Takata, and E. M. Sworzyn, "Destruction and Disposal of PCBs by Thermal and Non-Thermal Methods," Noyes, Park Ridge (1983); I. Mori, Kankyo Gijutsu, 14, 588 (1985). - 2) G. A. Epling, W. M. McVicar, and A. Kumar, Chemosphere, $\underline{17}$, 1355 (1988). - 3) M. Ohashi, K. Tsujimoto, and K. Seki, J. Chem. Soc., Chem. Commun., 1973, 384; K. Tsujimoto, S. Tasaka, and M. Ohashi, ibid., 1975, 758; M. Ohashi and K. Tsujimoto, Chem. Lett., 1983, 423; Y. Tanaka, T. Uryu, M. Ohashi, and K. Tsujimoto, J. Chem. Soc., Chem. Commun., 1987, 1703. - 4) J. Ph. Soumillion, P. Vandereecken, and F. C. De Schryver, Tetrahedron Lett., 30, 697 (1989). - 5) N. J. Bunce, J. P. Landers, J. A. Langshaw, and J. S. Nakai, Environ. Sci. Technol., <u>23</u>, 213 (1989); N. J. Bunce, C. T. DeSchutter, and E. J. Toone, J. Chem. Soc., Perkin Trans. 2, <u>1983</u>, 859. - 6) P. K. Freeman, R. Srinivasa, J.-A. Campbell, and M. L. Deinzer, M. L. J. Am. Chem. Soc., <u>108</u>, 5531 (1986). - 7) G. A. Epling and E. Florio, J. Chem. Soc., Chem. Commun., <u>1986</u>, 185; G. A. Epling and E. Florio, Tetrahedron Lett., <u>27</u>, 675 (1986). - 8) Typically, an $\mathrm{MeCN/H_{2}O}$ (9:1 v/v) solution (0.50 cm³) containing ClBP (0.10 mol dm⁻³) and $\mathrm{NaBH_{4}}$ (1.0 mol dm⁻³) was added to a quartz cuvette (1 mm i.d) and deoxygenated by a stream of argon. The photolysis with a Ushio model U1-501 Xenon lamp results in no appreciable reaction under our experimental conditions, although photolysis of ClBP and $\mathrm{NaBH_{4}}$ with a low pressure mercury lamp is reported to result in the dechlorination of ClBP.⁷) - 9) R. M. G. Roberts, D. Ostovic, and M. M. Kreevoy, Faraday Discuss. Chem. Soc., 74, 257 (1982). - 10) The reductive debromination of bromochlorobenzenes proceeds more efficiently than the dechorination, since chlorobenzene is obtained as a major product; e.g., the product ratio of PhCl to PhBr was 8:1 in the case of \underline{o} -BrC₆H₄Cl. - 11) S. Fukuzumi and T. Tanaka, "Photoinduced Electron Transfer," ed by M. A. Fox and M. Chanon, Elsevier, Amsterdam (1988), Part C, Chap. 10. - 12) The limiting quantum yields in the presence of $NaBH_4$ may be larger than 0.42, since the photolysis in the presence of $NaBH_4$ results in the formation of H_2 which bubbles up from the reactant solution, causing the slight decrease in the light absorption. (Received April 9, 1990)